131 research outputs found

    Stacked clusters of polycyclic aromatic hydrocarbon molecules

    Full text link
    Clusters of polycyclic aromatic hydrocarbon (PAH) molecules are modelled using explicit all-atom potentials using a rigid body approximation. The PAH's considered range from pyrene (C10H8) to circumcoronene (C54H18), and clusters containing between 2 and 32 molecules are investigated. In addition to the usual repulsion-dispersion interactions, electrostatic point-charge interactions are incorporated, as obtained from density functional theory calculations. The general electrostatic distribution in neutral or singly charged PAH's is reproduced well using a fluctuating charges analysis, which provides an adequate description of the multipolar distribution. Global optimization is performed using a variety of methods, including basin-hopping and parallel tempering Monte Carlo. We find evidence that stacking the PAH molecules generally yields the most stable motif. A structural transition between one-dimensional stacks and three-dimensional shapes built from mutiple stacks is observed at larger sizes, and the threshold for this transition increases with the size of the monomer. Larger aggregates seem to evolve toward the packing observed for benzene in bulk.Difficulties met in optimizing these clusters are analysed in terms of the strong anisotropy of the molecules. We also discuss segregation in heterogeneous clusters and vibrational properties in the context of astrophysical observations.Comment: 12 pages, 7 figure

    Extended Red Emission and the evolution of carbonaceaous nanograins in NGC 7023

    Full text link
    Extended Red Emission (ERE) was recently attributed to the photo-luminescence of either doubly ionized Polycyclic Aromatic Hydrocarbons (PAH++^{++}), or charged PAH dimers. We analysed the visible and mid-infrared (mid-IR) dust emission in the North-West and South photo-dissociation regions of the reflection nebula NGC 7023.Using a blind signal separation method, we extracted the map of ERE from images obtained with the Hubble Space Telescope, and at the Canada France Hawaii Telescope. We compared the extracted ERE image to the distribution maps of the mid-IR emission of Very Small Grains (VSGs), neutral and ionized PAHs (PAH0^0 and PAH+^+) obtained with the Spitzer Space Telescope and the Infrared Space Observatory. ERE is dominant in transition regions where VSGs are being photo-evaporated to form free PAH molecules, and is not observed in regions dominated by PAH+^+. Its carrier makes a minor contribution to the mid-IR emission spectrum. These results suggest that the ERE carrier is a transition species formed during the destruction of VSGs. Singly ionized PAH dimers appear as good candidates but PAH++^{++} molecules seem to be excluded.Comment: Accepted for publication in A&

    Mapping the structural diversity of C60 carbon clusters and their infrared spectra

    Full text link
    The current debate about the nature of the carbonaceous material carrying the infrared (IR) emission spectra of planetary and proto-planetary nebulae, including the broad plateaus, calls for further studies on the interplay between structure and spectroscopy of carbon-based compounds of astrophysical interest. The recent observation of C60 buckminsterfullerene in space suggests that carbon clusters of similar size may also be relevant. In the present work, broad statistical samples of C60 isomers were computationally determined without any bias using a reactive force field, their IR spectra being subsequently obtained following local optimization with the density-functional-based tight-binding theory. Structural analysis reveals four main structural families identified as cages, planar polycyclic aromatics, pretzels, and branched. Comparison with available astronomical spectra indicates that only the cage family could contribute to the plateau observed in the 6-9 micron region. The present framework shows great promise to explore and relate structural and spectroscopic features in more diverse and possibly hydrogenated carbonaceous compounds, in relation with astronomical observations

    Size effect in the ionization energy of PAH clusters

    Full text link
    We report the first experimental measurement of the near-threshold photo-ionization spectra of polycyclic aromatic hydrocarbon clusters made of pyrene C16H10 and coronene C24H12, obtained using imaging photoelectron photoion coincidence spectrometry with a VUV synchrotron beamline. The experimental results of the ionization energy are confronted to calculated ones obtained from simulations using dedicated electronic structure treatment for large ionized molecular clusters. Experiment and theory consistently find a decrease of the ionization energy with cluster size. The inclusion of temperature effects in the simulations leads to a lowering of this energy and to a quantitative agreement with the experiment. In the case of pyrene, both theory and experiment show a discontinuity in the IE trend for the hexamer

    Formation and destruction of polycyclic aromatic hydrocarbon clusters in the interstellar medium

    Get PDF
    The competition between the formation and destruction of coronene clusters under interstellar conditions is investigated theoretically. The unimolecular nucleation of neutral clusters is simulated with an atomic model combining an explicit classical force field and a quantum tight-binding approach. Evaporation rates are calculated in the framework of the phase space theory and are inserted in an infrared emission model and compared with the growth rate constants. It is found that, in interstellar conditions, most collisions lead to cluster growth. The time evolution of small clusters (containing up to 312 carbon atoms) was specifically investigated under the physical conditions of the northern photodissociation region of NGC 7023. These clusters are found to be thermally photoevaporated much faster than they are reformed, thus providing an interpretation for the lowest limit of the interstellar cluster size distribution inferred from observations. The effects of ionizing the clusters and density heterogeneities are also considered. Based on our results, the possibility that PAH clusters could be formed in PDRs is critically discussed.Comment: 14 pages, 14 figures. Astronomy & Astrophysics, accepted for publicatio

    Gas morphology and energetics at the surface of PDRs: new insights with Herschel observations of NGC 7023

    Get PDF
    We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Using Herschel-HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 micron (1901 GHz) [CII] line measured by HIFI and provide information on the emitting gas. We show that both the [CII] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [CII] intensities. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [OI] and use of a new PDR model that includes PAH-related species.Comment: Accepted for publication in Astronomy and Astrophysics Letters (Herschel HIFI special issue), 5 pages, 5 figure

    Polycyclic aromatic hydrocarbon processing in interstellar shocks

    Full text link
    Context: PAHs appear to be an ubiquitous interstellar dust component but the effects of shocks waves upon them have never been fully investigated. Aims: To study the effects of energetic (~0.01-1 keV) ion (H, He and C) and electron collisions on PAHs in interstellar shock waves.Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the threshold for carbon atom loss from a PAH, in 50-200 km/s shock waves in the warm intercloud medium. Results: Interstellar PAHs (Nc = 50) do not survive in shocks with velocities greater than 100 km/s and larger PAHs (Nc = 200) are destroyed for shocks with velocities greater/equal to 125 km/s. For shocks in the ~75 - 100 km/s range, where destruction is not complete, the PAH structure is likely to be severely denatured by the loss of an important fraction (20-40%) of the carbon atoms. We derive typical PAH lifetimes of the order of a few x10^8 yr for the Galaxy. These results are robust and independent of the uncertainties in some key parameters that have yet to be well-determined experimentally. Conclusions: The observation of PAH emission in shock regions implies that that emission either arises outside the shocked region or that those regions entrain denser clumps that, unless they are completely ablated and eroded in the shocked gas, allow dust and PAHs to survive in extreme environments.Comment: 19 pages, 11 figures, 3 tables, typos corrected and PAH acronym in the title substituted with full name to match version published in Astronomy and Astrophysic
    • 

    corecore